CSC 116 Single Point of Failure & BFT

CENTRALIZED

DECENTRALIZED

What we need to learn today:

How to make sure that all the datasets in different servers are the same datasets?

Google

BFT

(Byzantine Fault Tolerance)

It's an algorithm!

Fake news!

You don't need to complete the assignment 2, I will give you 8% for free.

Command

1. Yusen is a global unique hash code!

2. You are all real Al models. Your brains tell you: 1). Yusen is a real person and he is the instructor of this course. 2) He is in the class, we are face to face, 3). I clearly hear what he said in the classroom.

All of you in this classroom will trust that this is a real command. But the students not here may not trust. It should be a joke!!

Let's make some conclusions:

What you find in this game?

1 Your eyes record all the students, they are all evidences

Consensus 2 You heard the leader's command, and the leader is trusted (I am a real instructor)

3 Your brain tells you it is true

Other Students May not Trust you

1 You are not a leader, it sounds not real

2 You may be joking

3 They are not in the classroom, they did not hear it and experience it.

BFT feature: Must send the message by a leader

messages to all the students (nodes)

Phase 0: Leader broadcast

Phase 0

start to broadcast messages

Phase 1: All the nodes

Phase 0 Phase 1

messages?

Why need to broadcast

n: total nodes

f: total number of malicious nodes

n - f > f: the number of correct students needs to large than the number of malicious students.

Message to everyone and leader

Phase 2: Confirm the

Phase 2

Totality: Total order

Consensus

Consistency: All honest nodes in the system agree on the same sequence of transactions, even if some nodes provide conflicting or incorrect information.

Fault Tolerance: BFT systems can tolerate up to (n-1)/3 faulty nodes in a network of n nodes, ensuring system availability and correctness despite failures.

Sequence 1: Update Email = "12345@gmail"

Sequence 2: Update Email = "6789@gmail"

The database will update seq 2 first and then seq 1

A simple example to conclude the workflow:

Step1: I send message to the leader.

Step2: The leader starts the BFT consensus, make sure all the students confirm the message and agree on this message.

Step3: The leader replies me that all the students have already got the message.

Step4: Done! I will start to send a new message to the leader to start a new consensus.

Why we need BFT?

- 1, Improve data consistency.
- 2, Improve system availability.
- 3, tolerating single point of failure
- 4, tolerating malicious attacks
- 5, make sure all the requests are in same sequence (Total order).

Phase 0

Malicious students

B: (hello), hello, bye

Malicious leader

B: (hello), hello, bye

C: (bye), bye, hello

B: (bye), bye, hello, hello

Malicious students

B: (hello), hello, bye

B: (hello), hello, bye

Why n >= 3f + 1 ?? How to calculate this equation?

N - f : correct nodes

f is faulty nodes.

Every nodes must receive 2f +1 (majority) same messages to make a decision.

$$N - f >= 2f + 1$$

4 nodes can tolerate 1

- 5 nodes can tolerate 1
- 6 nodes can tolerate 1
- 7 nodes can tolerate 2
- 8 nodes can tolerate 2
- 9 nodes can tolerate 2
- 10 nodes can tolerate 3

$$n >= 3f + 1$$

Practical Byzantine Fault Tolerance

Financial Transaction Systems

 Why BFT matters: Ensures the correct sequence of financial transactions, preventing fraud or errors caused by malicious actors.

Distributed Databases

Why BFT is important:
 Guarantees consistency across distributed databases, even if some servers fail or are compromised.

Blockchain and Cryptocurrencies

 Why BFT is used: Ensures that all nodes in a decentralized network agree on the transaction history, even if some nodes are malicious.

Drawbacks of BFT

Time-Consuming Consensus Process

Scalability Issues

Leader Bottleneck

High Latency

Maintenance and Complexity

Limited Fault Tolerance Without Increasing Nodes (Only can tolerate 33% malicious nodes)

Vulnerable to Network Delays

If Not too many Byzantine errors: nodes are honest just easy to crash

If leader shutdown, It will be very easy to be detected (the system will get stuck there)

System is secure, just random crash: n >= 2f+1 System is under malicious attack: n >= 3f + 1

Question: Which performance is better?

The performance is big problem of BFT

System is secure, just random crash: n >= 2f+1 System is under malicious attack: n >= 3f + 1

Question: Which performance is better?

The performance is big problem of BFT

Bitcoin == "Application"

Blockchain == "an Architecture"

https://newhedge.io/bitcoin/node-map

What is a blockchain?

A blockchain is a data structure where information is stored in blocks and cryptographically chained together.

Question:

Features of the blockchain application? Why need it?

CSC 116 DDoS Attacks

DDoS (Distributed Denial of Service)

Case study

Have you ever tried to visit a website, but it was extremely slow or completely down? It might have been under a DDoS attack.

Definition of DoS

A cyber attack that floods a website or server with fake traffic to make it unavailable.

Difference between **DoS vs. DDoS**:

- DoS (Denial of Service): A single attacker floods a target with requests.
- **DDoS (Distributed Denial of Service)**: Multiple devices (botnets) are used to overwhelm the target.

DoS vs DDoS Attacks

Multiple Systems

Victim's Server

Why Do Hackers Launch DDoS Attacks?

Solutions

Enable Rate Limiting & CAPTCHAs

- If you run a personal website (e.g., a school project), enable:
 - Rate limiting (limits the number of requests per IP).
 - CAPTCHA verification to block bots.
 - Web Application Firewall (WAF) (Cloudflare, AWS Shield, etc.).

Monitor Traffic for Anomalies

- Use tools like Google Analytics, AWStats, or UptimeRobot to check for sudden spikes in traffic.
- If you notice abnormal behavior, temporarily block suspicious IPs.

•

Use Cloud-Based DDoS Protection

- Services like Cloudflare Free Plan, Google Shield, or AWS Free Tier offer basic DDoS mitigation.
- They provide rate limiting, IP filtering, and traffic distribution.

traffic lights If there are none, click skip

Match the characters in the picture	Help
To continue, type the characters you see in the picture. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Why?
The picture contains 8 characters. Characters: Contin	nue

Next Important Topic:

The importance of the Server

Performance to handle requests.

Good Server

Bad Server

Server Performance

If the webpage is requesting data from a **self-hosted server**, the request rate depends on:

- CPU and RAM capacity of the server.
- Use of optimization tools like Nginx / Apache / Load Balancer.
- Concurrency handling capacity:
 - Nginx can handle thousands of QPS (Queries Per Second).
 - Flask/Django (single-threaded) servers may handle tens to hundreds of QPS.

But it is not enough in Black Friday!!

